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SIMULTANEOUS FILM AND CONVECTION COOLING OF A PLATE INSERTED

IN THE EXHAUST STREAM OF A GAS TURBINE COMBUSTOR

by Cecil J. Marek and Albert J. Juhasz

Lewis Research Center

SUMMARY

Data were taken on a test section placed in the exhaust stream of a rectangular-
sector combustor with film cooling alone, convection cooling alone, and simultaneous
film and convection cooling. An optimum was found to exist for the ratio of film to con-
vection cooling at a fixed total coolant flow for the parallel-flow, single-slot configura-
tion. Simple expressions were derived to predict the optimum ratio when axial wall
conduction was assumed to be small.

The experimental results were obtained at atmospheric pressure and combustor
exhaust temperatures of 589 and 1033 K (6000 and 14000 F). The cooling air was at
ambient pressure and temperature. The wall temperatures were compared with calcu-
lated results. Good agreement was obtained for film cooling alone and convection cool-
ing alone. The calculated results for combined film and convection cooling deviated as
much as 30 percent from the experimental data. However, the calculated results showed
the same trends as the experimental data. The turbulent-mixing coefficient Cm used
in the turbulent-mixing film-cooling correlation was determined to be 0. 03 in the com-
bustor exhaust stream. This value was much lower than that previously found within
the combustor.

INTRODUCTION

This investigation compares three methods of cooling a test wall exposed to a hot
gas stream. The methods considered were film cooling alone, convection cooling alone,
and simultaneous film and convection cooling. The study was motivated by the need to
predict accurately combustor liner wall temperatures in advanced gas turbine engines.
The high combustion chamber temperatures and pressures occurring in advanced engines
necessitate that the cooling air be used as efficiently as possible. Insufficient cooling
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air would lead to liner damage, while excess cooling air would penalize the cycle effi-
ciency and degrade the turbine-inlet temperature profile.

Conventional combustor liner design is based primarily on film cooling, with con-
vection cooling occurring as a secondary mechanism in the process of ducting the film-
cooling air to successive downstream slots. Based on an analytical derivation, Colladay
(ref. 1) has shown that when film and convection cooling occur in series, it is beneficial
to use as much of the available heat sink in the cooling air as possible for convection
cooling before ejecting it as a film. To determine the improvement which might be ob-
tained with more convection cooling than exists within conventional liners and to test the
adequacy of available methods to predict the performance of the various cooling schemes,
the following program was undertaken:

First, the desirability of using more convection cooling was investigated with the
use of a double-walled test geometry.

Second, the turbulent-mixing correlation developed in reference 2 was evaluated
for its capability to predict accurate temperatures of a film-cooled surface exposed to
a combustor exhaust stream.

Finally, the validity of available predictive methods for the case of combined film
and convective heat transfer was studied. Although methods have been developed which
can be used in the analysis of combined film and convection cooling (refs. 1, and 3 to 5),
they are generally applicable at distances far from the slot exit, where it may be as-
sumed that the hot-gas convective-heat-transfer coefficient with film cooling is identical
to the coefficient without film cooling.

In this work, data were taken on a 13-centimeter- (5. O-in. -) long, double-walled
test section placed in the exhaust stream of a rectangular sector of a gas turbine com-
bustor described in reference 6. The combustor was operated at atmospheric pressure
and exhaust temperatures of 589 and 1033 K (6000 and 14000 F). Hot-gas-to-cooling-air
temperature differences, hot-gas velocities, and cooling flows were close to values
existing in conventional gas turbine combustors. Hot-gas turbulence levels were as-
sumed to be representative of the combustor exhaust stream. The experimental data
were compared to analytical predictions, and an optimum ratio of film to convection
cooling flow was shown to exist for a given geometry and combustor operating condition.
Analytical expressions were derived for this optimum ratio.

ANALYSIS

Prediction of Wall Temperatures

The wall temperatures with simultaneous film and convection cooling are determined
by solving the steady-state energy balance. The resulting equation at any distance x
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Figure 1. - Schematic for energy balance on wall.

downstream of the slot (see fig. 1) can be written as

et convection /Net
to wall from =
hot-gas side on

wall to cold
tvection stream

/Net axial
+ conduction

\along wall/

qh = qc + qw (1)

The heat fluxes can be written in terms of the heat-transfer coefficients to obtain

d2 T
hh(Tf - Tw) = hc(T

w Tc) - kw w (2)c w c2
dx

The effects of wall resistance and of radiation were neglected in equation (2), because
they were insignificant at the test conditions considered herein. Axial conduction along
the wall, however, has been included.

The turbulent-mixing correlation derived in reference 2 was used to calculate the
film temperature. The turbulent-mixing correlation is

3
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T h - Tf 1
?If (3)

Th Ts 1 + C x
Mss

where Cm is the turbulent-mixing coefficient and M is the mass-flux ratio psus/Phuh.
Equation (3) was used with and without convection to determine the film temperature Tf
at any distance x downstream of the slot exit for a given value of Cm.

The hot-gas convective-heat-transfer coefficient hh was calculated from the heat-
transfer coefficient for a flat plate given by

h 0365 kh (x + xo)PhUh 8r0.33
hh = °. 0365 (Prh) (4)

The term xo is the distance upstream of the slot exit, which is the apparent origin of
the hot-gas turbulent boundary layer. Equation (4) was used with and without film cool-
ing. The assumption that the heat-transfer coefficient depends only on the mainstream
flow has been shown (refs. 3 to 5) to hold well far downstream of the slot exit at a dis-
tance greater than 70 slot heights. For discussion of the use of this equation in the near-
slot region, refer to the RESULTS AND DISCUSSION section of this report.

The convection-cooling heat-transfer coefficient hc was calculated from

hc = k0. 023 cPcc) (Prc)0 33 (5)

To determine the temperature of the convection stream Tc at any position x, equa-
tion (2) was solved simultaneously with the energy balance on the convection stream
given by

cPcc() d = hc(Tw - Tc) (6)

The boundary condition at x = 0 is that the cooling air and the wall temperature are
equal. Thus, at x = 0

T,,, = T (7)
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This condition was assumed because of the heat sink of the inlet tubes. The end of the
wall, x = 1, was assumed to be in contact with both the film and the convection streams.
Thus, at x= l

dT
kw = hh(Tf - Tw) + hc(Tc - Tw) (8)dx 2 2 

One-half the area of the exposed end has been arbitrarily assumed to be in contact with
the film stream and one-half in contact with the convection stream.

Equations (2) and (6) were written in finite-difference form and solved by numerical
iteration.

Optimization of Film to Convection Flows

A trade-off exists between film and convection cooling. The designer can adjust the
film-cooling hole size or the convection passage height to deliver the flow at the optimum
ratio.

The overall cooling effectiveness 77 T can be related to the film- and convection-
cooling effectiveness. The overall cooling effectiveness is

Th -Tw
~T-

T h (9)

The film-cooling effectiveness 7f is defined as

Th - Tf
?If= (l0)

T h- T s

and the convection-cooling effectiveness (Pc is defined as

Tf- T w
c _Tf Tw (11)(Pc = Tf- Tci

Then the overall cooling effectiveness for parallel-flow cooling where Ts = Tci is
given by
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I T = 7f + -Pc - If(c (12)

If the film-cooling effectiveness is very high, the change in the overall cooling ef-
fectiveness 77T with convection cooling is small, and conversely.

The convection-cooling effectiveness (oc is related to the fraction of convection
cooling Yc when axial wall conduction is small by

SO C C (13)
1+C

Yc

The coefficient Cc is given by

Sth Wh Ac (Cp)c

Stc WT Ah( (1h
c c - (14)

1 - St
s C

c

where Cc is a function of geometry and hot-gas flow conditions and varies slightly
with Yc' The derivation of equations (13) to (17) is given in the appendix.

The film-cooling effectiveness can be written as

71f = (15)
Cf

1+-

Yf

where Cf is given by

Cmx Wh As
Cf= (16)

Ss W T Ah

The overall cooling effectiveness, equation (12), can be maximized at a constant total
coolant flow. The optimum ratio of film cooling to total cooling air for a fixed geom-
etry and quantity of total cooling air (i. e., Cc and Cf are assumed to be constant) is
given by
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1 + Cc - Cf (17)
(17)

(fopt 2

When the difference between C
c

and Cf is greater than 1, the optimum will be all
film cooling or all convection cooling, depending on which coefficient is the greater.

The optimum ratio of film cooling to convection cooling is given by

=f~~ - -- ~~~~~~(18)(Wf) ° 1 + Cc - Cf
c/pt 1+f- Cc

This relation can be used as a trial solution when making detailed calculations to search
for the optimum under conditions where the assumptions of negligible axial wall con-
duction and radiation no longer hold.

APPARATUS AND INSTRUMENTATION

Flow System

The rectangular combustor-test rig and associated airflow systems are shown sche-

matically in figure 2. Ambient-temperature combustion airflow was measured by a

square-edged orifice installed according to ASME standards. The air then entered a

direct-fired preheater using ASTM-A1 fuel, where the temperature was increased to

589 K (6000 F). A plenum chamber ensured a well-mixed flow at the test combustor
inlet. The combustor exhaust entered the instrument section which housed eight five-

point bare-wire platinum platinum- 13-percent-rhodium thermocouples and seven five-

point total pressure rakes for monitoring the combustor exhaust condition. The test
section was installed in a windowed section downstream of the instrument section of the
combustor.

Three independent cooling flows (convection air, film air, and slave air) were used

to cool the test section. Film and convection air cooled the test surface, and slave air

cooled the leading edge and undersurface of the test section. The three cooling flows
were introduced separately and metered independently with standard ASME square-edged
orificies. The combined combustor and cooling flow was finally exhausted through a

water-quench scrubber to the atmosphere.
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Test Combustor

A rectangular one-side-entry type combustor was used to provide the hot gas stream
for the cooling study. The design and performance of various side-entry type combustor
models are reported in reference 6. The combustor was the same combustor used in
the film-cooling study presented in reference 2, but with the film-cooling box removed.
The combustor is shown schematically in figure 3, along with the location of the test
section.

rQuartz viewing
I window

38
(15)

Y

( )l )
I----)

4.8 s
-_7-): (L 9)~t_

C - - - - J

- -- 9-

,,4.- ( I

c_-="_-

-- I- I

L I lr

|i ~-Water-cooledi temperature
i probes; 0. 96
i (0. 38) thick;
120-percent
Iblockage

r-in I !11

l'L

Film
S exit
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x Slave
exitI

-Test surface

Exhaust

"-Convection
exit

-Water-cooled
/ total pressure
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IIl blockage

Figure 3. - Test combustor schematic showing location of combustor instrumentation
and cooling test section. Dimensions are in cm (in.).
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Test Section

The test surface was cooled by either film air, convection air, or simultaneous
film and convection air. The slave air cooled the leading edge and undersurface by
222 K (4000 F) but dropped the test surface temperature by, at most, 11 K (220 F) at
the hot-gas condition of 1033 K (14000 F). No warpage of the test section was evident
throughout the test program. All the air was brought through the side of the test sec-
tion, as shown in figure 4. Flow distributors were inserted in the inlet tubes of the
convection and film streams to give uniform flow across the test slot. Within the
convection-air supply tube the flow distributor consisted of a smaller diameter tube
with 10 holes 0. 43 centimeter (0. 187 in. ) in diameter, with the holes at 1800 from the
slot exit. Within the film-cooling-air supply tube, the flow distributor was a semi-
cylindrical rod with 15 holes 0. 32 centimeter (0. 125 in. ) in diameter, which were
drilled at right angles to the axis and also countersunk to provide for smooth turning of
the flow. These inserts extended the complete length of the slot and resulted in a

Inlet convection

Inlet film
thermocouple--__.

Leading-edge
thermocouple-%

h ~~~~~~

(0. 0625) thick

Convection air
X0o

Stagnant
air gap

* Slave air
I

L In hnI n AROIn 1 i
/~/ ~~Iv livlieS U.48 {U. lo7 dlam to

/
-15 holes 0.32 (0. 125) diam to distribute film air

o alSIrlDute convection air

Figure 4. - Film- and convection-cooled test section showing location of the thermocouples and
cooling inserts. Dimensions are in cm (in. ).
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center-peaked velocity profile, with the maximum velocity being about 20 percent above
the mean.

The test surface was constructed of 0. 159-centimeter- (0. 0625-in. -) thick type-304
stainless steel. The leading edge and undersurface were 0. 159-centimeter- (0. 0625-
in. -) thick Hastelloy.

The test surface was 10.2 centimeters (4. 0 in. ) wide by 12. 7 centimeters (5. 0 in. )
long. The film-cooling slot exit was 0. 38 centimeter (0. 15 in. ) high and the convection
passage was 0. 3 centimeter (0. 12 in. ) high.

The leading edge of the test section was flame sprayed with Rockite (an alumina
oxide).

Temperature Instrumentation

Ten Chromel-Alumel (CA) thermocouples were installed 1. 22 centimeters (0. 48 in. )

apart within grooves on the centerline of the test surface. The grooves were filled with
filler braze to produce a smooth surface.

The inlet temperatures of the film and convection stream were measured with CA

thermocouples inserted within the inlet tubes, as shown in figure 4. Because of failure

of the film-cooling-inlet thermocouple early in the program, the film temperature was
inferred by extrapolating the wall temperatures to the slot exit. A check of the film-

inlet temperature was also provided by comparison to the convection-inlet temperature.

The inlet temperatures were higher at low cooling flows because of conduction within

the wall of the test section.
Two CA thermocouples were installed at the convection exit, and one CA thermo-

couple was placed on the leading edge of the test section.
The hot-gas temperature was determined by averaging the 10 platinum/platinum-

13-percent-rhodium thermocouples on the two rakes above the test section in the com-

bustor instrument section. Typical combustor exhaust temperatures at the 589 K

(6000 F) and the 1033 K (14000 F) conditions are shown in figure 5. The temperature

parameter commonly used to describe a combustor exhaust stream is the pattern fac-

tor 6p defined as

= Tmaximum exhaust - Taverage exhaust (19)
P T -T

average exhaust combustor inlet

The pattern factor for this combustor at the 1033 K (14000 F) condition was 0. 33 and

changed less than ±0. 01 over the range of combustor flow rates tested.
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r Test surface
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*~~~~~~~~ 0r · 
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583 583 583 583 578 578 575 572 10. 7

(590) (590) () ) (•90) (580) (580) (575) (570) 2)
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~~~~~(580) ~ (590) 5(55) I (575) (580) (575) (590)575 578 575 583~~~~~~~
5.3 18.7 30.7 44.0 56.0 69.3 81.3

(a)Average hot-gas exhaust temperature, 583 K (589° F); nominal temperature, 589 K (6000 F).

Percent duct
94.7 width

Reading 1.

rTest surface
1023 939 1047 1033 ; 928 1022 892 925

(1385) (1230) (1Q25) (1400) (1210) ( 145) (1205)* (1210) (1380) (1145) (12051
1081 956 1033 1111 i 992 1064 906 756

(1485) (1260) (1400) (1540) (1325) (1455) (1170) (900)
1031 1086 1103 1 1047 1083 881

(1395) (1330) (1495) (1525) (1425) (1490) (1125)
992 994 1006 1050 ! 1027 1039 831 894

(1325) (1270) (& (1 30) I (1390) (1410) 10)35) (1150)
928 939 919 944 964 992 914 878

(1210) (1230) (1195) (1240) (1275) (1325) (1185) (1120)

(b) Average hot-gas exhaust temperature, 1033 K (14000 F); nominal temperature, 1033 K (14000 F). Reading 42.

* Thermocouple locations
where I denotethermo-
couples averaged to determine
hot-gas temperature

Figure 5. - Combustor exhaust temperatures in kelvin (OF). Location of temperatures in percentages of duct height and width. Dimensions in centimeters (in.).
View looking downstream.

TEST CONDITIONS AND PROCEDURE

Range of Conditions

The combustor was operated at near atmospheric pressure throughout the test pro-
gram. The combustor-inlet air temperature of 589 K (6000 F) was provided by an up-

stream direct-fired heater. Combustor reference velocities were 20, 27, and 39 meters
per second (64, 90, and 128 ft/sec). These reference velocities were computed from
the airflow rate, the combustor-inlet static pressure and temperature, and the maxi-
mum cross-sectional area of the combustor housing (0. 097 m 2 , or 1.04 ft2 ).

The cooling tests were performed at the four combustor operating conditions given
in table I. Condition 1 was obtained without the main combustor burning, with only the
preheater providing the temperature rise.

The cooling flows ranged from mass-flux ratios M of 0. 4 to 4. 4. The inlet coolant
temperature ranged from 300 to 316 K (800 to 1100 F).
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TABLE I. - COMBUSTOR CONDITIONS

Estimated Accuracy of Temperatures

The hot-gas temperatures from the combustor were recorded for each cooling flow
just prior to recording the test-surface temperatures. For the two rakes above the
test section the maximum temperature varied from the average of the two rakes by as
much as 100 K (1800 F) at the 1033 K (14000 F) condition. The plate temperatures were
reproducible to ±5 K (100 F), but because of the drift of the combustor the overall accur-
acy of the test-surface temperatures was ±11 K (200 F).

RESULTS AND DISCUSSION

Data were taken on a test section placed in the exhaust stream of a rectangular-
sector combustor with film cooling alone, convection cooling alone, and simultaneous
film and convection cooling.

The wall-temperature data are compared to the predicted wall temperatures cal-
culated by the method described in the ANALYSIS section. Numerical finite-difference
methods were used to solve the equations for all the tests. Correcting the wall temper-
atures for radiation amounted to less than a 2 percent change in the calculated wall
temperatures. Hence, the effect of radiation was neglected in the calculations. Al-
though the thermal conductivity of the wall ranged from 0. 0081 to 0. 013 J/sec-cm-K
(8 to 13 Btu/hr-ft-°F) over the temperature range from 311 to 811 K (1000 to 10000 F),
respectively, for type-304 stainless steel, a constant value of 0. 01 J/sec-cm-K
(10 Btu/hr-ft-°F) was used for all the calculations.

The data are presented in terms of the reduced coolant flow, defined as the coolant
flow per unit of cooled wall area over the hot-gas mass flux:

13

Condition Combustor mass flow Combustor exhaust Hot-gas velocity over
temperature test surface

kg/sec lb/sec
K nF m/sec ft/sec

1 1.59 3.5 589 600 72 234

2 1.59 3.5 1033 1400 125 410

3 2.27 5.0 1033 1400 180 585
4 1.13 2.5 1033 1400 90 293



Pcucsc

PhUh1

Reduced coolant flow =

PsUsSs

Phuhl

for convection cooling

for film cooling

The results of film cooling alone are discussed first, followed by the results of
convection cooling alone and then by the results of simultaneous film and convection
cooling. A complete listing of the experimental data is given in table II.

Film Cooling

Assuming the film temperature Tf to be equal to the measured wall temperature
Tw at any x, the experimental film-cooling effectiveness was plotted as a function of
the downstream distance parameter x/Mss, as shown in figure 6. The value of the
turbulent-mixing coefficient Cm which best correlates the data was found to be 0. 03.
This is much lower than the value of 0. 15 found within the same combustor (ref. 2), but
is greater than the value of 0. 01 found within low-turbulence wind tunnels. The value
of Cm is considered to be lower in the exhaust stream than within the combustor be-
cause of the natural damping of turbulence which occurs with distance. Also, the tur-
bulence was affected by the pressure and temperature rakes upstream of the test sec-
tion. No attempt was made to measure the turbulence in the exhaust stream directly.

The agreement of the T-values predicted by the turbulent-mixing correlation
(eq. (3)), with Cm equal to 0. 03, was within 10 percent of the experimental data at

0 .

_

i§3
E 

Downstream distance parameter, x/Ms
s

Figure 6. - Experimental film-cooling effectiveness as function of downstream
distance parameter.
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TABLE II. - EXPERIMENTAL DATA

(a) SI units

Run Mass flow Hot-geus Mass ftsw Reduced Isetjfitm Mass flow Reduced Inlet con- Exit con- Wall temperatures, K, at specified downstream

rate of temper- rate of fim tempera- teo convec- vection vection distances in centimeters

hot gas, ature, film, flow ture, convec- tion flow tempera- tempera-
kg/..c K kg/.ee rate K ti"' rate Wre, t~r 1.0212.2313.45 4.67 5.8917.1118. 3319. 55 10.7 7 11.99kg/sec K kg/sec rate K tion, rate ture, lure,

I ___ _ _ kg/sec K K

1

2

3

4

5

6

17

16

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

1.62

1.57

1.57

1.58

1.56

1.57

1
1.57
1.53

1.57

1.57

1.54

1.58
1.55

1.57

1.55

1.55

1.61
1,60

1.58

1.59

1.57

1.54

1.59
2.56

2.59

1.59

13.9

1.59

2.27
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TABLE II. - Concluded. EXPERIMENTAL DATA

(b) U.S. customary units

R Mass flow Hot-gas Mass flow Reduced Inlet film Mass flow Reduced Inlet con- Exit con- Wall temperatures, OF, at specified downstream
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(a) Hot-gas mass flow rate, 1. 58 kg/sec (3. 5 Ib/sec);
hot-gas temperature, 589 K (600o F).

(b) Hot-gas mass flow rate, 1. 58 kg/sec (3. 5 Ib/sec);
hot-gas temperature, 1033 K (1400o F).
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Figure 7. - Experimental and predicted wall temperatures for film cooling. Mixing coefficient Cm , 0.03; pressure, 1 atmosphere.
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the four hot-gas conditions over the wide range of cooling flows tested.
The predicted wall temperatures are compared with experimental data in figure 7.

The agreement between the predicted and experimental wall temperatures is good over
the wide range of cooling flows, hot-gas flows, and hot-gas temperatures. However,
there are deviations of ±25 percent evaluated in terms of the temperature difference
between the wall and the inlet cooling air.

Axial wall conduction was included in the calculations; but the effect was small,
resulting in less than a 4 percent change in the predicted wall temperatures. The axial
conduction within the wall raised the inlet gas temperature by 11 K (200 F) at the high
hot-gas temperatures and low cooling flows.

Convection Cooling

Figure 8 shows the experimental wall temperatures for convection cooling only and
the calculated wall-temperature profiles predicted by five different methods. Except for
a short distance close to the inlet, the experimental wall temperature was almost con-
stant with increasing distance. This resulted from the ratio of the hot-gas to convection-

Curve
" Experimental

1 Laminar boundary layer
2 -- Turbulent boundary layer
3 --- Turbulent boundary layer

corrected for uncooled
leading edge, eq. (21)

4 ----- Augumented turbulent
boundary layer, eq. (22)

5 Equation (22) corrected for
500 -- wall conduction

~ - " 450 v4

4 B 3500[--- -- 
400300 2

7 o -" " - -1
1200 3-

0 2 4 6 8 10 12 14
Downstream distance, x, cm

I I I I I I
0 1 2 3 4 5

Downstream distance, x, in.

Figure 8. - Comparison of several hot-gas heat-transfer equa-
tions with experimental data for convection cooling. Hot-gas
mass flow rate, 1. 58 kg/sec (3. 5 Ib/sec); hot-gas temperature,
589 K (6000 F); pressure, 1 atmosphere; reduced convection
flow rate, 0. 033.
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cooling heat-transfer coefficients decreasing with distance as the hot-gas boundary layer
develops. The decrease in this ratio would normally decrease the wall temperature; but
since the convection-cooling temperature is increasing, the two effects compensate,
producing a nearly constant wall temperature.

The Reynolds number at the slot exit based on the distance xo from the stagnation
point (6. 02 cm or 2.37 in. ) was 8. 8x104 . When the equation for a laminar boundary
layer on a flat plate (curve 1) was used, the predicted wall temperatures were much
lower than the experimental results. This was not surprising because of the high turbu-
lence in the exhaust stream.

References 7 and 8 have shown that in a gas stream of high turbulence, transition
from a laminar to turbulent boundary layer occurs at Reynolds numbers as low as
2x104. Based on the heat-transfer coefficient for turbulent flow on a flat plate, with the
assumption that the origin of the thermal and hydrodynamic boundary layers occurs at
the stagnation point, wall temperatures were obtained which were still too low (curve 2).

Since the leading edge was much hotter than the plate, a correction to the turbulent
convective heat-transfer coefficient was made based on the assumption that the hydro-
dynamic boundary layer originated at the stagnation point but the thermal boundary layer
originated at the slot exit. Tribus and Kline (ref. 9) have shown that with this correction
the resulting hot-gas heat-transfer coefficient is given by

0.0292 kh huh(x + x 0. 33
h

h . (]Pr) (21)

As shown by curve 3, the temperatures predicted by using equation (2) were slightly
lower than the experimental results.

The best results were obtained by using a heat-transfer coefficient given by

hh\~~0 _
h 0. 0365 kh Phuh(x + xo) ) 0. 33h x +- u (Prh)33 (22)

x + xo [ 1h

The increase in hot-gas heat-transfer coefficient over that predicted by equation (21)
was probably caused by the step in the wall for the film-cooling-slot exit producing
separation of the hot-gas stream and reattachment to the wall downstream of the slot
exit. Equation (22) (curve 4) resulted in good agreement with the experimental temper-
atures except for those measured in the vicinity of the slot exit. Curve 5 shows that
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Figure 9. - Experimental and predicted wall temperatures for convection cooling. Pressure, 1 atmosphere.
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correcting the wall temperatures for axial conduction, because of the sink effect of the
inlet tubes, resulted in good agreement with the experimental temperatures for the en-
tire length of the plate. In this experiment, conduction effects were apparent 3. 8 centi-
meters (1. 5 in. ) from the slot exit.

Using equation (22) resulted in good agreement for the other hot-gas conditions and
cooling flows, as shown in figure 9. The predicted wall temperatures agreed with the
experimental data within 5 percent.

Simultaneous Film and Convection Cooling

In this section the trade-off between film and convection cooling is discussed.
Figure 10 shows the comparison of the predicted results and the experimental data,

when the film flow rate was held constant and the rate of convection cooling was increas-
ed. Increasing the convective cooling rate does significantly lower the wall tempera-
tures, as expected.

The agreement between the predicted results and the experimental data is not as

Experimental Predicted Reduced flow rates
Film Convection

o 0.012 0.0
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o ---- .012 .023
o .012 .035
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Downstream distance, x, in.

Figure 10. - Experimental and predicted wall temperatures for
combined film and convection cooling for constant film-
cooling flow rate of 0.0091 kg/sec (0.02 Ib/sec) with in-
creasing convection cooling. Hot-gas mass flow rate,
2.26 kg/sec 15.0 Ib/sec); nominal hot-gas temperature,
1033 K (14000 Fl; prsressure, 1 atmosphere.
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good as with film or convection cooling alone. The assumption used here was that the
heat-transfer coefficient on the hot-gas side is independent of the film flow rate. It is
evident that the hot-gas-side heat-transfer coefficient did change with film flow rate.
Except for the region in the vicinity of the slot, the correlation underpredicted the wall
temperatures obtained by as much as 80 K (1400 F). This may be caused by the hot-side
heat-transfer coefficient changing with film flow rate. Seban (ref. 3) shows that at
x/ss values greater than 70, the predicted and experimental wall temperatures will
again agree, suggesting that at larger distances from the slot exit the hot-gas flow field
is independent of the film flow rate. In this experiment the maximum x/ss at the
downstream end of the test section was 33. Therefore, one would expect that the hot-
gas convective coefficient would be affected by the film flow. No attempt was made to
adjust the heat-transfer-coefficient expressions because of the complicated flow field,
present on the hot-gas side, resulting from the film-cooling jet streams from the tube
inserts spreading out on the slot lip and interacting with the hot-gas stream.

Figures 11(a) to (c) demonstrate the trade-off between film and convection cooling.
In each figure the total amount of cooling flow was held constant. An optimum exists for
the ratio of film to convection cooling which results in a minimum wall temperature with
a fixed quantity of total cooling air. A wall-temperature reduction of as much as 69 K
(1250 F) results, compared to the all-film case, by using a film to convection coolant
flow ratio of near 1. One explanation for the lower temperatures obtained with combined
film and convection cooling is that the cooling air is in contact with both sides of the
wall, increasing the effective area for heat transfer from the wall. With either cooling
mode alone, the cooling air sweeps one side of the wall only. Therefore, at the optimum
conditions both forms of cooling usually exist.

The predicted data do not show as large an effect as observed experimentally, but
the same trends are indicated. The deviation between the experimental and the pre-
dicted results is as much as 30 percent.

The use of the equations derived for predicting the effect of cooling flow rate on the
cooling effectiveness is presented in figure 12. With this geometry at a reduced cooling
flow of 0. 069, Cf = 0. 416, and Cc = 0. 512 so that the optimum predicted by equation (17)
is 0. 548. The agreement between the actual and the predicted optimum is fair. The
curve is relatively flat at the optimum so that a slight deviation from the optimum ratio
does not change the overall cooling effectiveness greatly. Although the advantage ap-
pears small over either all-film or all-convection cooling, an improvement of 0. 1 in the
cooling effectiveness may represent a change of 111 K (2000 F), which could significant-
ly improve the life of the liner.

The optimum ratio of film-cooling flow rate to convection-cooling flow rate at other
reduced total cooling flows can be obtained by using equations (14), (16), and (17). The
parameter Cf is inversely proportional to the reduced total cooling flow, while Cc
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Figure 11. - Experimental and predicted wall temperatures for combined film and convection cooling showing the effect
of the trade-off between film and convection cooling. Hot-gas temperature, 1033 K (1400o F); pressure, 1 atmosphere.
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o Experimental overall effectiveness t7T
Equations (12), (13), or (15)

1. 0 O0. 548 (optimum
by eq. (17))

o Overall cooling
o] effectiveness '7 T

*_ . - / ffectiveness -cooling

4 \Convection-cooling
gO ~~ ~ /I~~ \effectiveness Yc

0 .2 .4 .6 .8 1.0
Fraction of film cooling to total cooling, Yf

Figure 12. - Experimental and predicted cooling effectiveness
as function of film-flow fraction. Downstream distance,
12.2 cm (4.8 in. ); hot-gas mass flow rate, 1. 13 kg/sec
(2. 5 Ib/sec); hot-gas temperature, 1033 K (14000 Fl; pres-
sure, 1atmosphere; total cooling mass flow rate, 0.027
kg/sec (0. 06 Ib/sec).

varies inversely as the 0. 8 power of the reduced total cooling flow. Over the conditions

shown in figure 11, the optimum ratio of film-cooling flow rate to total cooling remains

nearly constant at 0. 548.
The magnitudes of Cf and Cc can be determined by doing calculations with film

cooling alone and convection cooling alone. In this case Yf and Yc equal 1 and the

overall cooling effectiveness will be equal to the film- and convection-cooling effective-

ness, respectively. Therefore, as with the present test section, if the wall temperature

is cooler with film cooling alone than with convection cooling, Cf is smaller than Cc

and the optimum will be towards more film cooling than convection cooling.

Several additional results can be derived from equations (14), (16), and (17). As

the convection-cooling effectiveness is raised by using a higher pressure drop or ex-

tended surfaces, the optimum ratio of film to convection cooling shifts towards more

convection cooling.
The film-cooling coefficient Cf increases directly with downstream distance,

whereas the convection-cooling coefficient Cc varies slightly with distance so that for

short walls more film cooling should be used than convection cooling. For long walls

the ratio shifts toward more convection cooling.
In general, an optimum usually exists for a single slot in the film- to convection-

cooling ratio; and significant improvement may be attained by cooling the wall with the
optimum ratio of film to convection cooling.
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Applications

The analysis and experimental results show that, for a single slot in parallel flow,
it is better to use combined film and convection cooling and that an optimum ratio of
film to convection cooling exists. At this optimum ratio, a maximum cooling effective-
ness at a given total cooling airflow will be obtained. In order to remove the heat effi-
ciently, the flow passages should be designed to deliver the film and convection streams
at the optimum cooling flow ratio. The optimum ratio depends on whether the convection
or film stream is more effective in cooling the wall. If convection is more effective for
a particular geometry, the optimum cooling flow ratio will be toward more convection
cooling, and conversely. In general, it is better to use both forms of cooling.

Using all the air in a counterflow scheme to first convectively cool and then film
cool will result in still a higher cooling effectiveness (ref. 1). The trade-off between
parallel-flow and counterflow cooling needs to be determined for the individual case in
terms of available passage space and allowable pressure drop. For the same passage
heights the counterflow geometry would require additional pressure drop.

For a multiple-segmented liner, the analysis presented in this report would apply
to the first section. The decision to introduce fresh film flow to the second slot, as
shown in figure 13(a), or to pass the air through the convection passage as in figure 13(b)
needs to be determined in terms of the allowable pressure drop and the temperature rise
of the convective stream.

At the higher temperatures and mass fluxes in advanced gas turbines, the cooling
air can be used more effectively if the convective-cooling heat transfer is increased by
such means as utilizing a double-walled liner or using fins where sufficient pressure
drop is available.

Hot gas -,

Film
Film 2 Film

Casing wall

(a) Fresh film air introduced after first segment.

Hot gas -.
Convection Film Convection Film

Convection

Casing wall

(bi No fresh film air introduced after first segment.

Figure 13. - Two alternates in design of multiple segmented
liners.
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SUMMARY OF RESULTS

Film and convection cooling data were taken on a parallel-flow test section installed
in the exhaust stream of a combustor. The following results were obtained:

1. An optimum in the ratio of film and convection cooling flows was shown to exist.
The optimum is dependent on the particular geometry and the total reduced coolant flow.

2. A simple expression was derived for the optimum film to convection coolant flow
ratio when the axial wall conduction was negligible.

3. The turbulent-mixing film-cooling correlation worked well over a range of exit
gas temperatures and exhaust gas flows with a turbulent-mixing coefficient Cm of
0. 03. The value of 0.03 for Cm in the exhaust stream was considerably lower than
within the same combustor, where Cm was equal to 0. 15.

4. The predicted wall temperatures with convection cooling alone agreed well with
experimental values when an adjusted hot-gas heat-transfer coefficient for a flat plate
was used.

5. The prediction of wall temperatures with simultaneous film and convection cool-
ing using the hot-gas heat-transfer coefficient without film cooling showed deviations
from the experimental values in the near-slot region. However, the effect of the film to
convection coolant flow ratio on the predicted wall temperatures showed the same trends
as the experimental data.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, October 17, 1972,
501-24.
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APPENDIX A

DERIVATION OF OPTIMUM RATIO OF FILM TO CONVECTION COOLING FLOWS

The basic equations for predicting the wall temperatures have been presented in the
ANALYSIS section. The optimum ratio of film to convection cooling flow will be de-
rived for the case of thin walls where the wall resistance and axial wall conduction is
negligible.

Effect of Convective Coolant Mass Flow Rate

For a wall of unit depth, the wall temperature is related to the heat-transfer coef-
ficients by

(Al)hh(Tf - Tw) = hc(Tw - Tc)

or

Tf -T w St Wc Ah (CP)h

Tw- T Sth Wh Accw h h C 
(A2)

where Stc and Sth are the Stanton numbers for the coolant and hot gas, respectively.
The Stanton number is defined as

St h
puCp

and for the coolant is given by

(A3)

Stc h
PcucCp

0. 023

(Rec)0. 2 (Prc)0.66
(A4)

Doubling the flow will decrease the Stanton number by only 13 percent, so for the pur-
poses of the optimization it will be considered to be constant.

The convective-cooling effectiveness (Pc must be related to the convective
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coolant flow for a given film-cooling flow rate. The desired relation is obtained through
the convective energy balance or

Pc (Cpc dT
Pcuc(Cp)dSC = hc(Tw - Tc)

Tc -Tci x
st- s

T - T. Cw ci c

(A5)

(A6)

where a is the mean effective temperature difference, defined as

1 1
a =_ jl (Tw - T c) dx

Tw Tci x
(A7)

The value of a is unity at the slot exit and decreases with increasing distance. From
equations (A2) and (A6), an expression for the overall convective-cooling effectiveness

c is given by

Tf- Tw

Tf- Tci

1 (A8)

Sth Wh Ac (CP)

St W Ah (Cp)h
1+ \i

_ax

Sc

1

1 +

Yc

where Yc is the fraction of convection air to total cooling air and Cc is defined as
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SthWh Ac (Cp)c

Stc WT Ah ()

I - ax St
c

lC
c

-
1 St

Sc

where Cc is a mild function of the convective coolant flow but for the optimization will
be considered constant.

Effect of Film Coolant Mass Flow Rate

The turbulent-mixing film-cooling correlation will be used here to express the re-
lation between the film coolant flow rate and the film temperature

Th- Tf 1 (Al

h s 1 + m1+Cx
Mss

1 (Al:
Cf

l+-

Yf

where Yf is the mass ratio of film flow to total flow and Cf is defined as

Cmx Wh A s

Ss WT Ah

Here Cf is constant and independent of the convection to film coolant flow split.

Optimization of Ratio of Film to Convection Coolant Flow Rates

1)

2)

3)

The overall effectiveness for parallel-flow cooling where the initial film and convec-
tion temperatures are equal is given by
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Th- Tw

71T -h f I PC - fS'C (A14)
Th-Tci

Now 77T can be maximized by using equations (A9) and (A12); holding the hot-gas

condition, total coolant flow, and downstream distance x constant; and remembering
that

Yc + Yf = (A15)

By using the method of Lagrangian multipliers we obtain the optimum condition

Yc Yf-C (A16)

' c 7f

This relation will hold at the optimum condition. Several other forms exist for this re-
lation which can be obtained by rearranging equations (A9), (A12), and (A14). For a
known total coolant rate and geometry

() n Cf (2

and

1+ C< C Cf
(Yf' ~~~~o =~ 2 ~(A18)

For a known 7/T which we desire to achieve we have

(\ )opt (1 ) A19)

where the ratio of Cf/Cc will nopt vary significantly (A20)

where the ratio of Cf/CC will not vary significantly with the total coolant flow.
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Where radiation and axial wall conduction are important, these relations can be

used as first approximations; but detailed calculations must be done for the particular

geometry.
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APPENDIX B

SYMBOLS

A area

a reduced mean driving force, defined by eq. (A7)

Cc parameter defined by eq. (14)

Cf parameter defined by eq. (16)

Cm turbulent-mixing coefficient

Cp specific heat

h heat-transfer coefficient

k thermal conductivity

1 length of test surface

M mass-flux ratio, PSUs/Phuh

Pr Prandtl number

q heat flux

Re Reynolds number

St Stanton number

SC convection passage height

Ss film slot height

Tc convection temperature

Tci convection-inlet temperature

Tf film temperature

Th hot-gas temperature

Ts film-inlet temperature

Tw wall temperature

u velocity

W mass flow rate

WT total cooling flow rate, film plus convection

x distance downstream of slot exit
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xo leading edge upstream of slot exit

Y mass fraction of film- or convection-cooling flow to total cooling flow

6 wall thickness of test section

6 combustor exhaust pattern factor
p

?lf film-cooling effectiveness, defined by eq. (10)

77T overall cooling effectiveness, defined by eq. (9)

Ii viscosity

p mass density

' c convection-cooling effectiveness, defined by eq. (11)

Subscripts:

c convection conditions

f film conditions

h hot-gas conditions

opt conditions at optimum ratio of film to convection cooling

s film slot exit conditions

w wall properties
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